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Abstract— This paper presents a novel implementation of
genetic algorithms for locomotion control of robots. The main
difference is that, instead of assuming a feedback model for
the controller and using genetic algorithm to find the optimal
control gains, the proposed algorithm directly generates the
optimal joint torques for the robot. This new form of genetic
algorithm is called data-driven genetic algorithm (DDGA) in
this paper. We implement our proposed control algorithm on
a planar hopping robot in simulation. The results show that
the robot is able to perform hopping motions on a flat surface
as well as climbing the stairs. We also show that, using our
proposed controller, the robot can execute a range of highly
dynamic manoeuvres such as somersault and backflip.

I. INTRODUCTION

Legged robots have been one of the significant topics in
robotics due to their extra accessibility compared to wheeled
robots. In different types of legged robots, the single-legged
(monopod) robots are easiest to balance due to its constant
hopping motion, which provides extra time to adjust foot
placement in the flight phase (when the robot foot leaves
the ground). Study of monopod robot control is a promising
direction in tackling robot locomotion challenges.

According to Azad [1], monopod robots are categorized
into two forms: prismatic-leg hoppers and knee-leg hoppers.
The former ones are comprised of prismatic and revolute
joints while the later ones only have revolute joints. Al-
though knee-leg hoppers have a simpler form and resemble
human leg structures, they are also much more difficult to
control. Azad et al. [1] developed an angular momentum
based controller for knee-leg hoppers, which can balance
a single-joint knee-leg monopod at any unstable balanced
configuration while following trajectories. For prismatic-
leg hoppers, state-of-art methods are derived from Raiberts
feedback controller [4].

While current state-of-the-art controllers have achieved
stable hopping and balancing [1] [4], a human-designed
controller is often required; specifically, they are model-
based controllers. Designing model-based controllers can be
tedious since it involves kinematic modeling of the robot.
Compared to model-based methods, DDGA does not require
a designed controller. This feature allows DDGA to generate
actuation signals based on terrain conditions and the presence
of obstacles.
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Fig. 1: A prismatic-leg hopper climbing stairs using the
proposed data-driven genetic algorithm in the Bullet Physics
simulation environment [2].

II. DATA-DRIVEN GENETIC ALGORITHM

DDGA borrows inspiration from natural evolution. We
define the whole process in six steps, as shown in Fig. 2.

A. Step 1: Chromosome Initialization

The first step of evolution using DDGA is initialization
of chromosomes. Chromosomes are optimization objects in
genetic algorithms. We define a full chromosome c¢ ((b)
in Fig. 2 ) as a head to tail connected sub-chromosomes
[c1,¢2,--5Ciy -y cn) ((a) in Fig. 2), where i represents actuator
index, n represents index for the last actuator. A sub-
chromosome c; is a series of genes g ((c) in Fig. 2). A gene g
carries information 7/, which represents encoded torque (for
revolute joint) or force (for prismatic joint) for actuator i at
time step ¢. In the first step, 500 chromosomes are randomly
initialized as the first generation. The initialization process is
described as following: for each gene g in sub-chromosome,
randomly select a continuous value between [—G;, G;], where
G; represents the joint torque limit.

B. Step 2: Constrained Crossover

The constrained crossover resembles mating behavior in
natural evolution. In DDGA, the crossover operation per-
forms on the sub-chromosome scale instead of the full-
chromosome scale. The imposed constraint prevents cross-
actuator signal mixing, ensuring that torque values in off-
spring chromosome do not exceed joint limit (maximum
torque or force for the joint).
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Fig. 2: Six evolution steps in data-driven genetic algorithm.

C. Step 3: Constrained Mutation

The mutation operation alters gene values in chromosomes
following a probabilistic distribution. In DDGA, the proba-
bility that gene g; carries value 7; after mutation is :

1
— T <T!
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0, Otherwise

Where 7; represents the value after mutation, following a
uniform distribution whose upper and lower boundary are
joint torque level limit 7\, and T},

D. Step 4: Signal Magnification & Stepping

To convert the chromosome into the actuation signal, we
introduce a sigmoid magnification function:
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Where 7/ represents encoded torque for joint i at time 7,
T! represents actual torque value, Ty, = 300N represents
maximum torque in all actuators.

After magnification, the signal is extended by replicating
every gene N times, where N represents step size. The signal
stepping operation converts continuous actuation signals into
discrete pulses and introduces the hopping behavior.

E. Step 5: Evaluation

Evaluation serves as a benchmark for a chromosome’s per-
formance. In DDGA, a chromosome is evaluated in Bullet’s
physics simulation [2] by sending its converted actuation

signal to the robot. The locomotion performance is calculated
using the following equation:

1 N
F=—) |x+h—k 3
N,;[ ] (3)
Where N represents time steps, x and h represents x
coordinate and body height in current time step. k is contact
punishment and k = 10 when the robot body touches the
ground, otherwise k = 0.

F. Step 6: Selection

The selection step serves as a filter to choose offspring
chromosomes. A three-round tournament selection [3] is
used in DDGA. Selected offspring enter the next genera-
tion and start from step 2 (constrained crossover) in every
subsequent generation.

III. RESULTS

We tested DDGA in several environments. On the flat rigid
ground, DDGA achieved four stable hops for 5.00 seconds
of operation. On the stair climbing test, the robot ascended
1.5m. When a 7-degree slope is added to the environment,
DDGA automatically generates somersault movement; back-
flip is performed when a 20-degree slope is introduced. These
results show DDGA is able to generate actuation signals
based on terrain conditions and the presence of obstacles.
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