
Neural-Network-Controlled SLIP Model for Humanoid Running

Songyan Xin, Brian Delhaisse, Yangwei You, Chengxu Zhou,
Mohammad Shahbazi, Nikos Tsagarakis

Abstract— To generate dynamic motions such as hopping and
running on legged robots, model-based approaches are usually
used to embed the well studied spring-loaded inverted pen-
dulum (SLIP) model into the whole-body robot. In producing
controlled SLIP-like behaviors, existing methods either suffer
from online incompatibility or resort to classical interpolations
based on lookup tables. Alternatively, this paper presents the
application of a data-driven approach which obviates the need
for solving the inverse of the running return map online.
Specifically, a deep neural network is trained offline with a
large amount of simulation data based on the SLIP model to
learn its dynamics. The trained network is applied online to
generate reference foot placements for the humanoid robot.
The references then can be mapped to the whole-body model
through an optimization-based inverse dynamics controller.

I. INTRODUCTION

The Spring-Loaded Inverted Pendulum (SLIP) model is a
well recognized template model [1] for hopping and running
based on the biomechanical studies [2]. Due to its simplicity
and platform-independence property, it has been widely used
in the design and control of legged robots [3]–[5].

The SLIP running is a dynamic gait rendering cyclic
stability, which requires a sufficiently large prediction hori-
zon for control. Early studies in this regard are largely
influenced by the simple intuitive control implemented on
Raibert’s hoppers [6]. A large body of research in the
SLIP literature has been directed towards more accurate
and realistic controls, most of which can be categorized
into two schemes: the methods which implement dead-beat
like controllers through solving the running return maps
[7], [8]; and tabular control methods relying on look-up
tables constructed upon the data generated by comprehensive
forward-in-time simulations covering a wide range of SLIP
states and parameters [9]–[11]. Application of the former
to online control is not preferred, due to the non-linear
optimization inevitably involved in the computations. The
latter is fast enough for online implementation since a look-
up table can be constructed offline. However, it is practical
only for the range of parameters using which the look-up
table is constructed. Moreover, the size of the table grows
exponentially with the number of the input variables, which
challenges the generality of the approach.

The present work strives to fill the gap between the non-
linear optimization method and the classical look-up table
method by using a deep neural network. The network is
trained offline with large amount of simulation data based
on the SLIP model to learn its dynamics. Once this most

Department of Advanced Robotics, Istituto Italiano di Tecnologia, via
Morego, 30, 16163 Genova, Italy.

Email: name.surname@iit.it

Fig. 1. The Center of Mass dynamics of the robot is controlled to match
that of a SLIP model. A neural network trained offline with a large amount
of SLIP simulation data is used to encode the foot placement behaviour.

time-consuming part has been done, the trained network
could be easily deployed online for real-time querying. The
knowledge learned from simulation data are encoded in a
limited number of weight parameters and this parametric
representation does not enlarge with inputs and outputs.
Comparing to the look-up table approach, the interpolation
between data are naturally embedded inside the network.

II. DEEP NEURAL NETWORK FOR SLIP-LIKE MOTION
EMBEDDING

A. Spring Loaded Inverted Pendulum Model

The spring-loaded inverted pendulum (SLIP) model con-
sists of a point mass m and a massless spring with stiffness k
and rest length l0. The apex point (ż = 0) during flight phase
is usually chosen to study the periodic motion of system.
At the apex point, the system state can be described by one
variable ẋ due to the total energy conservation throughout the
whole step. Given the speed at one apex point, the system
behavior in the ensuing stance and flight phases is fully
determined by the touchdown angle θTD. The next apex state
is a function of current apex state and the touchdown angle:

ẋn+1 = f(ẋn, θTD,n) (1)

where n denotes the current running step. A one step
deadbeat controller emerges by inverting this apex return
map:

θ∗TD,n = f−1(ẋn, ẋ
∗
n+1) (2)

where θ∗TD,n is the touchdown angle that ensures reaching
the desired velocity ẋ∗

n+1 at the next apex. However, the
hybrid nature of the return map and nonlinearity of stance

phase dynamics exclude the possibility of finding a closed
form solution for this inverse relationship. As such, the
problem of finding θ∗TD,n is inevitably transformed into a
nonlinear optimization problem:

θ∗TD,n = argmin
θ

|ẋ∗
n+1 − f(ẋn, θ)|

s.t. θmin < θ < θmax

(3)

where θ is the touchdown angle to be optimized to bring the
system state at next apex f(ẋn, θ) as close as possible to the
desired one ẋ∗

n+1 respecting the angle limits. Usually, this
time-consuming optimization process can only be conducted
offline, while convergence cannot be guaranteed. These lim-
itations motivate us to explore a different possibility which
better suits the online implementation requirement, that is a
neural-network-based representation for the inverse mapping
(2).

B. Deep Neural Network Controller

The proposed neural network takes the inputs [ẋn, ẋ
∗
n+1]

and outputs the touchdown angle θ∗TD,n. A deep learning
techniques is adopted to train the network offline. The trained
network is then applied online which produces an output for
every possible inputs. Below, we first describe how valid
datasets are generated for training the network and then
present the structure of the neural network and the training
process in detail.

1) Data Generation: The neural network under con-
sideration learns from datasets that comes from apex-to-
apex simulations of the SLIP model as given in (1). Each
simulation produces one dataset. For simplicity, we choose
a constant energy level and all simulations are performed
with this energy level Econs. Given a fixed energy level,
the initial state can be completely determined by an initial
horizontal velocity ẋ0. Together with a touchdown angle θ0,
we can simulate forward the SLIP model to get the next apex
velocity ẋ1 = f(ẋ0, θ0). At this point, a training example has
been generated. A general representation of this process is:

ẋ
(i)
1 = f(ẋ

(i)
0 , θ

(i)
0) (4)

from which a training example (x(i),y(i)) is collected as:{
x(i) = [ẋ

(i)
0 , ẋ

(i)
1]T

y(i) = [θ
(i)
0]

(5)

where i = 1, 2, ..., n. Repeating this process with a different
initial velocity and touchdown angle, the whole data set can
be collected.

2) Neural Network Structure and Training: To learn
the generated data, a fully-connected feed-forward network
(FNN) has been used. Compared to tabular approaches [9]
which check the entry closest to a given input and produce
the associated output, FNN allows to generalize to different
inputs. In addition, it can model non-linear functions by using
non-linear activation functions. For a given input x(i), we can
define the FNN in a recursive way as follows:

hl = fl(Wlhl−1 + bl), ∀l ∈ {1, · · · , L}
with h0 = x(i) and hL = ŷ(i),

(6)

where L is the total number of layers, fl is the activation
function applied on the corresponding layer l, Wl are the
weight matrices, bl are the bias terms, and ŷ(i) is the
predicted output. We can summarize the above equation by
ŷ(i) = fNN (x(i);W) where W = {W1, b1, · · · ,WL, bL}
are the weights that need to be optimized. In our experiments,
our network has 3 hidden layers with 20, 50, and 20 units
respectively. We used ‘relu’ as the non-linear activation func-
tion for each hidden layer. To avoid overfitting, we regularize
our network using dropout. The training was carried out
using the mean-squared loss:

LMSE =
N∑
i=1

||y(i) − fNN (x(i);W)||2, (7)

along with the Adam optimizer.

III. CONCLUSION

In this paper we proposed to use a deep neural network to
encode the dynamics of a simple template model and then
map to the whole-body robot. Different from the non-linear
optimization based approach or the classical tabular method,
it transfers most of the computations offline. Once trained,
the query of learned knowledge is very fast and can be
embedded into real-time control framework. The encoding
of two-dimensional SLIP model long-term dynamics (return
map) has been introduced in this paper. The approach is
general and can be well extended to three-dimensional SLIP
model.

REFERENCES

[1] R. J. Full and D. E. Koditschek, “Templates and anchors: neu-
romechanical hypotheses of legged locomotion on land,” Journal of
Experimental Biology, vol. 202, no. 23, pp. 3325–3332, 1999.

[2] R. Blickhan and R. Full, “Similarity in multilegged locomotion:
bouncing like a monopode,” Journal of Comparative Physiology A:
Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 173,
no. 5, pp. 509–517, 1993.

[3] M. Ahmadi and M. Buehler, “Controlled passive dynamic running ex-
periments with the ARL-monopod II,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 974–986, 2006.

[4] U. Saranli, M. Buehler, and D. E. Koditschek, “RHex: A simple and
highly mobile hexapod robot,” The International Journal of Robotics
Research, vol. 20, no. 7, pp. 616–631, 2001.

[5] J. A. Grimes and J. W. Hurst, “The design of ATRIAS 1.0 a unique
monoped, hopping robot,” in Proceedings of the 2012 International
Conference on Climbing and Walking Robots and the Support Tech-
nologies for Mobile Machines, pp. 548–554, 2012.

[6] M. H. Raibert et al., Legged robots that balance, vol. 3. MIT press
Cambridge, MA, 1986.

[7] A. Wu and H. Geyer, “The 3-d spring–mass model reveals a time-
based deadbeat control for highly robust running and steering in
uncertain environments,” IEEE Transactions on Robotics, vol. 29,
no. 5, pp. 1114–1124, 2013.

[8] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pp. 5134–5140,
IEEE, 2013.

[9] M. H. Raibert and F. C. Wimberly, “Tabular control of balance in
a dynamic legged system,” IEEE Transactions on systems, man, and
Cybernetics, no. 2, pp. 334–339, 1984.

[10] D. Koepl and J. Hurst, “Force control for planar spring-mass running,”
in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on, pp. 3758–3763, IEEE, 2011.

[11] H. Herr, A. Seyfarth, and H. Geyer, “Speed-adaptive control scheme
for legged running robots,” Nov. 13 2007. US Patent 7,295,892.

